CVE-2022-26937: Microsoft Windows Network File System NLM Portmap Stack Buffer Overflow

June 08, 2022 | Trend Micro Research Team

In this excerpt of a Trend Micro Vulnerability Research Service vulnerability report, Guy Lederfein and Jason McFadyen of the Trend Micro Research Team detail a recently patched code execution vulnerability in the Microsoft Windows operating system. The bug was originally discovered and reported to Microsoft by Yuki Chen. A stack buffer overflow vulnerability exists in Windows Network File System. A remote attacker can exploit this vulnerability by sending specially crafted RPC packets to a server, resulting in code execution in the context of SYSTEM. The following is a portion of their write-up covering CVE-2022-26937, with a few minimal modifications.


A stack buffer overflow vulnerability exists in Windows Network File System. The vulnerability is due to improper handling of crafted RPC responses to Portmap requests made by the Network Lock Manager (NLM) RPC program.

A remote attacker can exploit this vulnerability by sending malicious RPC calls to a target server. Successful exploitation may result in arbitrary code execution under the context of SYSTEM. Unsuccessful exploitation results in a crash of the target system.

The Vulnerability

Microsoft Windows ships with several network features designed to communicate and interact with non-Windows files shares. One of these modules is called Network File System (NFS).

NFS is a network file system protocol originally developed by Sun Microsystems in 1984. Version 2 is documented in RFC 1094. Version 3 is documented in RFC 1813. Version 4 was developed by the IETF and is documented in RFC 3010 (released December 2000) and revised in RFC 3530 (released April 2003) and RFC 7530 (released March 2015). NFS allows users to access remote file shares in the same way that the local file system is accessed. Different access levels and permissions can be set on the share, such as read-write and read-only. Additionally, IP/UID/GID/Kerberos security can be used. NFS uses Open Network Computing (ONC) Remote Procedure Call (RPC) to exchange control messages. ONC RPC was originally developed by Sun Microsystems and can also be referred to as Sun RPC.

The Network Lock Manager (NLM) protocol is an extension of NFS versions 2 and 3, which provides a System V style of advisory file and record locking over the network. Since NFS versions 2 and 3 are stateless protocols, the NLM protocol was developed to manage the state of locks on files stored on NFS shares. The NLM protocol supports both synchronous and asynchronous procedures to implement locking and file-sharing functionality. Similar to NFS, NLM also uses ONC RPC to exchange control messages.

ONC RPC uses XDR packets, which can be transmitted over UDP or TCP. Over UDP, the XDR packet is contained within the UDP payload. Over TCP, XDR packets are preceded by a Fragment header (as illustrated in the following table). The most significant bit of the Fragment header indicates whether the packet is the last fragment, and the remaining 31 bits are the length of the Fragment that follows. The Fragment itself contains the XDR packet.

The structure of an ONC RPC call is as follows:

The Program field of the RPC message specifies what RPC service the message is sent to. Windows NFS server implements the NLM protocol via RPC with Program type set to 100021. It supports multiple RPC procedures, which can be specified in the Procedure field in the RPC message. A list of synchronous and asynchronous procedures supported by the NLM protocol version 3 follows:

Microsoft Windows runs the RPCBIND RPC program, which implements the Port Mapper protocol, documented in RFC 1833. The RPCBIND program converts RPC program numbers into universal addresses, which can then be used by programs to communicate over UDP or TCP. Briefly, the way it works is that when a program wishes to use RPC, it registers its ports with the host's Port Mapper. A client that wishes to issue RPC calls connects to the Port Mapper, uses various RPC calls such as GETPORT, GETADDR etc. to obtain a port on which the RPC service is available, and connects to the desired RPC service. Standard RPC program numbers have been defined and maintained by IANA and they include portmapper (100000), nfs (100003), mount daemon (100005) and hundreds of other less commonly used programs. Only the portmapper service and NFS service have standard ports of 111 and 2049 respectively.

Windows implements the RPCBIND protocol via RPC with Program type set to 100000. It supports multiple RPC procedures, which can be specified in the Procedure field in the RPC message. One of the procedures supported by the RPCBIND program when Program Version is set to 3 or 4, is GETADDR, which is procedure number 3. The reply to this RPC call contains the Universal Address associated with the callee. The format for the returned Universal Address is XDR_String, which has the following format:

A stack buffer overflow vulnerability exists in Windows Network File System. More specifically, the vulnerability is due to incorrect handling of the Universal Address field returned in GETADDR RPC replies. When Windows NFS responds to an NLM call in an asynchronous manner, the NlmGetClientAddressAndConnection() function is called. This flow is triggered either as a response to an asynchronous NLM call, such as NLM_TEST_MSG, NLM_LOCK_MSG, NLM_UNLOCK_MSG, or when the server sends an `NLM_GRANTED` call to the client, after a previous (synchronous or asynchronous) call by the client to create a lock returned the status `LCK_BLOCKED`. If the IPv6 protocol is used for communication over the ONC RPC protocol, the server will issue a GETADDR RPC call to the client to retrieve its IP address. When the Universal Address field returned by the client in the GETADDR reply is processed by the NFS server, the field is copied using memmove() into a buffer of size 96 bytes. In addition, this buffer is later referenced at an index equal to the Universal Address field’s string size and set to 0. However, the NlmGetClientAddressAndConnection() function does not verify the size of the returned Universal Address string. Therefore, if the string provided by the client is 96 bytes or longer, the buffer will be written past its boundary, resulting in the stack buffer overflow condition.

A remote attacker can exploit this vulnerability by sending an NLM request triggering an asynchronous response by the NFS server. When the server sends a GETADDR RPC request, the attacker can respond with a crafted GETADDR reply. Successful exploitation may result in arbitrary code execution under the context of SYSTEM. Unsuccessful exploitation results in a crash of the target system.

Source Code Walkthrough

The following code snippet was taken from nfssvr.sys version 10.0.17763.1999. Comments added by Trend Micro have been highlighted.

 In function NlmGetClientAddressAndConnection():

Detecting Attacks

ONC RPC uses XDR packets, which can be transmitted over UDP or TCP. Over UDP, the XDR packet is contained within the UDP payload. Over TCP, XDR packets are preceded by a Fragment header (as illustrated in the following table). The most significant bit of the Fragment header indicates whether the packet is the last fragment, and the remaining 31 bits are the length of the Fragment that follows. The Fragment itself contains the XDR packet.

The detection device must inspect all outgoing ONC RPC calls, which have the following structure:

The detection device must check if the Message Type field is 0 (Call), the Program field is 100000 (portmap), the Program Version field is larger than 2, and the Procedure field is equal to 3 (GETADDR). If found, the device must inspect the Program-specific data object. This object uses the rpcb structure, which has the following format:

If the Program Number field is set to 100021 (NLM), the detection device must inspect all incoming ONC RPC replies, which have the following structure:

The detection device must check if the XID field is equal to the XID field of the GETADDR RPC call detected, and the Message Type field is 1 (Reply). If found, the device must inspect the Program-specific data object. This object uses the XDR_String structure, which has the following format:

If the String Length field is larger than 95, the traffic should be considered suspicious; an attack exploiting this vulnerability is likely underway.

Conclusion

This bug was patched by Microsoft in May 2022 and assigned CVE-2022-26937. In their write-up, they also list disabling NFSV2 and NFSV3 as a method to mitigate attacks. However, this could lead to a loss of functionality. Applying the security update is the best method to fully address this vulnerability.

Special thanks to Guy Lederfein and Jason McFadyen of the Trend Micro Research Team for providing such a thorough analysis of this vulnerability. For an overview of Trend Micro Research services please visit http://go.trendmicro.com/tis/.

The threat research team will be back with other great vulnerability analysis reports in the future. Until then, follow the ZDI team for the latest in exploit techniques and security patches.